LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc., DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2013

MT 5508/MT 5502 - LINEAR ALGEBRA

Date: 12/11/2013

Dept. No.

Max.: 100 Marks

Time: 9:00 - 12:00

PART A

ANSWER ALL THE QUESTIONS

 $(10 \ 2 = 20 \ marks)$

- 1. If V is a vector space over a field F, show that (-a)v = a(-v) = -(av) for $a \in F, v \in V$.
- 2. Show that the vectors (1,1) and (-3,2) in \mathbb{R}^2 are linearly independent over \mathbb{R} the field of real numbers.
- 3. Define a basis of a vector space.
- 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a vector space homomorphism defined by T(a,b) = (a-b,b-a,-a) for all $a,b \in \mathbb{R}$. Find nullity of T.
- 5. Normalize (1 + 2i, 2 i, 1 i) in C^3 relative to the standard inner product.
- 6. Let $T \in A(v)$ and $\lambda \in F$. If λ is an eigenvalue of T, prove that $\lambda I T$ is singular.
- 7. Define Nilpotent and Idempotent matrices.
- 8. Show that $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is orthogonal.
- 9. Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 2 & 3 & 1 \end{pmatrix}$ over the field of rational numbers.
- 10. Define unitary linear transformation.

PART B

ANSWER ANY FIVE QUESTIONS

(5 8 = 40 marks)

- 11. Show that a nonempty subset W of a vector space V over F is a subspace of V if and only if $aw_1 + bw_2 \in W$ for all $a, b \in F, w_1, w_2 \in W$
- 12. Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = (0)$.
- 13. If V is a vector space of dimension n, then prove that
 - i) Any n + 1 vectors in V are linearly dependent
 - ii) Any set of n linearly independent vectors of V is basis of V.
- 14. If A and B are subspaces of a vector space V over F, prove that $(A+B)/B \cong A/A \cap B$.
- 15. State and prove Schwarz inequality.

- 16. If $\lambda \in F$ is an eigenvalue of $T \in A(V)$, then prove that for any polynomial $f(x) \in F[x]$, $f(\lambda)$ is an eigenvalue of f(T).
- 17. Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
- 18. If $T \in A(V)$ is skew-Hermitian, prove that all of its eigenvalues are pure imaginaries.

PART C

ANSWER ANY TWO QUESTIONS

 $(2 \ 20 = 40 \ marks)$

- 19. a) If S and T are subsets of a vector space V over F, then prove that
 - i) S is a subspace of V if and only if L(S) = S.
 - ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
 - iii) L(L(S)) = L(S).
 - iv) $L(S \cup T) = L(S) + L(T)$.
 - b) If V is a vector space of finite dimension and W is a subspace of V, then prove that $\dim V/W = \dim V \dim W$.
- 20. a) If V is a vector space of finite dimension, and is the direct sum of its subspaces U and W, then prove that $\dim V = \dim U + \dim W$
 - b) If U and V are vector spaces over F, and if T is a homomorphism of U onto V with kernel W, then prove that $U/W \cong V$.
- 21. State and prove Gram-Schmidt orthonormalization process.

the basis $v_1 = (1,0,1), v_2 = (-1,2,1), v_3 = (2,1,1)$?

- 22. a) Let $V = R^3$, and let $T \in A(V)$ be defined by $T(a_1, a_2, a_3) = (3a_1 + a_3, -2a_1 + a_2, -a_1 + 2a_2 + 4a_3)$. What is the matrix of T relative to
 - b) Investigate for what values of λ , μ the system of equations
 - $x_1 + x_2 + x_3 = 6$, $x_1 + 2x_2 + 3x_3 = 10$, $x_1 + 2x_2 + \lambda x_3 = \mu$ over the rational field has a) no solution b) a unique solution c) an infinite number of solutions.

\$\$\$\$\$\$